LAKE CHARTER TOWNSHIP WATER SYSTEM 2022 WATER QUALITY REPORT

2022 Consumer Confidence Report

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Lake Township Water is pumped from Lake Michigan. In 2022 water was pumped at an average rate of 1.46 million gallons per day. It is mixed with sodium hypochlorite and aluminum sulfate and remains for a period of time in four large basins to allow disinfection and the settling out of suspended matter. It is then filtered, and the quality is continuously monitored and ensured by hundreds of tests performed each day, every day of the year. Once the drinking water is pumped from the plant, it is checked for free available chlorine residual and possible microorganisms. We also contract with independent laboratories to test numerous possible contaminants entering the water supply.

Source water assessment

Your water comes from Lake Michigan. The Michigan Rural Water Association performed an assessment in 2021 to determine the susceptibility or the potential of contamination. Sensitivity/susceptibility ratings use a six-tiered scale from "very-low" to "high," based primarily on geologic sensitivity, water chemistry, and contaminant sources. Using the Great Lakes Protocol for assessing the intake sensitivity and susceptibility, LCTWS's intake sensitivity is Moderate, and the susceptibility is Moderately High

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

For any specific questions or concerns on how to get involved in water conservation, log on to the EPA website www.epa.gov

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.

- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit <u>www.epa.gov/watersense</u> for more information.

Source Water Protection Tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use EPA's Adopt Your Watershed to locate groups in your community, or visit the Watershed Information Network's How to Start a Watershed Team.
- Organize a storm drain stenciling project with your local government or water supplier. Stencil a message next to the street drain reminding people "Dump No Waste Drains to River" or "Protect Your Water." Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

Residential Cross Connection Inspections

The Water Dept. will complete the remaining exterior residential cross-connection inspections in 2023. In 2022 there were 813 residential inspections completed. We have contracted with Hydrocorp Inc., which specializes in cross-connections. Hydrocorp will notify those scheduled for exterior inspections this year. We have more information in the resources tab on our website and a good video explaining cross-connections and why it is vital to eliminate any potential hazard.

www.lakechartertownshipwater.org

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Lake Charter Township Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Lake Charter Twp. Water System has <u>no known</u> lead service connections in the water distribution system.

of known lead service lines: 0# of unknown service line materials: 583# of total service line connections: 1,904

	MCLG	AL		Sample Date	# Samples Exceeding AL	Exceeds AL	Typical Source of Contaminant
Inorganic Contaminants							
Copper - action level at consumer taps (ppm)	1.3	1.3	0.1	2021	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
100% of the samples we	ere below	the	AL of 1	.3 ppm. 7	The range of	samples we	ere .0027 ppm110 ppm
Lead - action level at consumer taps (ppb)	0	15	4	2021	1	No	Lead service lines, corrosion of household plumbing including fittings and fixtures; Erosion of natural deposits
95% (19 of 20) of the samples were below the AL of 15 ppb. The range of samples were <1.0 ppb – 24 ppb							

While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

			Detect	Range				
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
Disinfectants & Disinfection	n By-Prod	ucts						
(There is convincing evidence	e that addit	ion of a disinfectant is	necessar	y for	contro	l of micro	obial contar	ninants)
Chlorine (as Cl2) (ppm)	4	4	1.61	NA	NA	2022	No	Water additive used to control microbes
Haloacetic Acids (HAA5) (ppb)	NA	60	22.7	NA	NA	2022	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	60.9	NA	NA	2022	No	By-product of drinking water disinfection
Total Organic Carbon (% Removal)	NA	TT	10.01	NA	NA	2022	No	Naturally present in the environment
Inorganic Contaminants								

			Detect	Ra	nge			
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
Antimony (ppb)	6	6	0	NA	NA	2022	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0	NA	NA	2022	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium (ppm)	2	2	.023	NA	NA	2022	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	4	4	0	NA	NA	2022	No	Discharge from metal refineries and coal- burning factories; Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0	NA	NA	2022	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	.99	NA	NA	2022	No	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide (ppb)	200	200	.0072	NA	NA	2022	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	.12	NA	NA	2022	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories

			Detect	Ra	nge			
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
Mercury [Inorganic] (ppb)	2	2	ND	NA	NA	2022	No	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills; Runoff from cropland
Nitrate [measured as Nitrogen] (ppm)	10	10	.28	NA	NA	2022	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Selenium (ppb)	50	50	ND	NA	NA	2022	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Sodium (ppm)	NA		14	NA	NA	2022	No	Erosion of natural deposits; Leaching
Thallium (ppb)	.5	2	ND	NA	NA	2022	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories
Microbiological Contamina	ants							
E. coli (RTCR) - in the distribution system	0	Routine and repeat samples are total coliform positive and either is E. coli - positive or system fails to take repeat samples following E. coli positive routine sample or system fails to analyze total coliform positive repeat sample for E. coli.	ND	ND	ND	2022	No	Bacteria found in the environment, foods, and intestines of people and animals
Total Coliform (RTCR)	NA	TT	ND	ND	ND	2022	No	Naturally present in the environment
Turbidity (NTU)	NA	0.3	.04	.03	.09	2022	No	Soil runoff
% of the samples were below measurement was .09. Any n	neasuremer	nt in excess of 1 is a vio	olation u	nless				
Synthetic organic contamir	nants inclu	ding pesticides and he	rbicides	5				Residue of banned

			Detect	Ra	nge			
Contoninonto	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Tarr	IIiah	Sample	Violation	Tamical Compo
Contaminants 2,4-D (ppb)	70	70	Water ND	NA	NA	Date 2022	Violation No	Typical Source Runoff from herbicide used on row crops
Alachlor (ppb)	0	2	ND	NA	NA	2022	No	Runoff from herbicide used on row crops
Atrazine (ppb)	3	3	ND	NA	NA	2022	No	Runoff from herbicide used on row crops
Benzo(a)pyrene (ppt)	0	200	ND	NA	NA	2022	No	Leaching from linings of water storage tanks and distribution lines
Carbofuran (ppb)	40	40	ND	NA	NA	2022	No	Leaching of soil fumigant used on rice and alfalfa
Chlordane (ppb)	0	2	ND	NA	NA	2022	No	Residue of banned termiticide
Dalapon (ppb)	200	200	ND	NA	NA	2022	No	Runoff from herbicide used on rights of way
Di (2-ethylhexyl) adipate (ppb)	400	400	ND	NA	NA	2022	No	Discharge from chemical factories
Di (2-ethylhexyl) phthalate (ppb)	0	6	ND	NA	NA	2022	No	Discharge from rubber and chemical factories
Dinoseb (ppb)	7	7	ND	NA	NA	2022	No	Runoff from herbicide used on soybeans and vegetables
Endrin (ppb)	2	2	ND	NA	NA	2022	No	Residue of banned insecticide
Heptachlor (ppt)	0	400	ND	NA	NA	2022	No	Residue of banned pesticide
Heptachlor epoxide (ppt)	0	200	ND	NA	NA	2022	No	Breakdown of heptachlor
Hexachlorobenzene (ppb)	0	1	ND	NA	NA	2022	No	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclopentadiene (ppb)	50	50	ND	NA	NA	2022	No	Discharge from chemical factories
Lindane (ppt)	200	200	ND	NA	NA	2022	No	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	40	40	ND	NA	NA	2022	No	Runoff/leaching from insecticide used on

			Detect	Ra	nge			
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
					0			fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	200	200	ND	NA	NA	2022	No	Runoff/leaching from insecticide used on apples, potatoes and tomatoes
PCBs [Polychlorinated biphenyls] (ppt)	0	500	ND	NA	NA	2022	No	Runoff from landfills; Discharge of waste chemicals
Pentachlorophenol (ppb)	0	1	ND	NA	NA	2022	No	Discharge from wood preserving factories
Picloram (ppb)	500	500	ND	NA	NA	2022	No	Herbicide runoff
Simazine (ppb)	4	4	ND	NA	NA	2022	No	Herbicide runoff
Toxaphene (ppb)	0			NA	NA	2022	No	Runoff/leaching from insecticide used on cotton and cattle
Volatile Organic Contamin	ants				•		•	
1,1,1-Trichloroethane (ppb)	200	200	ND	NA	NA	2022	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	ND	NA	NA	2022	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	ND	NA	NA	2022	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	0	5	ND	NA	NA	2022	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	ND	NA	NA	2022	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	ND	NA	NA	2022	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	ND	NA	NA	2022	No	Discharge from chemical plants and other industrial activities
Chlorobenzene (monochlorobenzene) (ppb)	100	100	ND	NA	NA	2022	No	Discharge from chemical and agricultural chemical factories
Dichloromethane (ppb)	0	5	ND	NA	NA	2022	No	Discharge from pharmaceutical and chemical factories

			Detect	Ra	nge			
Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	In Your Water	Low	High	Sample Date	Violation	Typical Source
Ethylbenzene (ppb)	700	700	ND	NA	NA	2022	No	Discharge from petroleum refineries
Styrene (ppb)	100	100	ND	NA	NA	2022	No	Discharge from rubber and plastic factories; Leaching from landfills
Toluene (ppm)	1	1	ND	NA	NA	2022	No	Discharge from petroleum factories
Trichloroethylene (ppb)	0	5	ND	NA	NA	2022	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	ND	NA	NA	2022	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	ND	NA	NA	2022	No	Discharge from petroleum factories; Discharge from chemical factories
cis-1,2-Dichloroethylene (ppb)	70	70	ND	NA	NA	2022	No	Discharge from industrial chemical factories
trans-1,2-Dichloroethylene (ppb)	100	100	ND	NA	NA	2022	No	Discharge from industrial chemical factories

Additional Contaminants

In an effort to ensure the safest water possible the State has required us to monitor some contaminants not required by Federal regulations. Of those contaminants, only the ones listed below were found in your water.

Contaminants	State MCL	Your Water	Violation	Explanation and Comment
Chloride		12 ppm	No	Erosion of natural deposits
Hardness as CaCO3		137 ppm	No	Erosion of natural deposits
Sulfate		27 ppm	No	Erosion of natural deposits

PFAS

Per- and polyfluoroalkyl substances (PFAS) are a large group of man-made chemicals that include perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). PFAS have been used globally during the past century in manufacturing, firefighting and thousands of common household and other consumer products. These chemicals are persistent in the environment and in the human body – meaning they don't break down and they can accumulate over time. In recent years, experts have become increasingly concerned by the potential effects of high concentrations of PFAS on human health.

PFAS and Your Health

The State of Michigan is working with the National Center for Environmental Health, Agency for Toxic Substances and Disease Registry (ATSDR), and additional partners to better understand how PFAS might affect people's health.

Scientists are still learning about the health effects of exposures to mixtures of PFAS. Although more research is needed, some studies in people have shown that certain PFAS may:

- Lower a woman's chance of getting pregnant
- Increase the chance of high blood pressure in pregnant women
- Increase the chance of thyroid disease
- Increase cholesterol levels
- Change immune response
- Increase the chance of cancer, especially kidney and testicular cancers

How can I stay updated on the situation?

The State has created a website where you can find information about PFAS contamination and efforts to address it in Michigan. The site will be updated as more information becomes available. The website address is: http://michigan.gov/pfasresponse.

Per- and polyfluoroalk	yl substance	s (PFAS)					
Regulated Contaminant	MCL, TT, OR MRDL	MCLG or MRDLG	Level Detected	Range	Year Sampled	Violation Yes/NO	Typical Source of Contaminant
Hexafluoroproplyne oxide dimer acid (HFPO-DA) (ppt)	370	N/A	ND	N/A	2022	NO	Discharge and waste from industrial facilities utilizing the Gen X chemical process
Perfluorobutane sulfonic acid (PFBS) (ppt)	420	N/A	ND	N/A	2022	No	Discharge and waste from industrial facilities; stain- resistant treatments
Perfluorohexane sulfonic acid (PFHxS) (ppt)	51	N/A	ND	N/A	2022	NO	Firefighting foam; discharge and waste from industrial facilities
Perfluorohexanoic acid (PFHxA) (ppt)	400,000	N/A	ND	N/A	2022	NO	Firefighting foam; discharge and waste from industrial facilities
Perfluorononanoic acid (PFNA) (ppt)	6	N/A	ND	N/A	2022	No	Discharge and waste from industrial facilities; breakdown of precursor compounds
Perfluorooctane sulfonic acid (PFOS) (ppt)	16	N/A	2.2	N/A	2022	NO	Firefighting foam; discharge from electroplating facilities; discharge and waste from industrial facilities
Perfluorooctanoic acid (PFOA) (ppt)	8	N/A	2.6	N/A	2022	NO	Discharge and waste from industrial facilities; stain- resistant treatments

Per- and polyfluoroalkyl substances (PFAS)							
Unregulated Contaminant	MCL, TT, OR MRDL	MCLG or MRDLG	Level Detected	Range	Year Sampled	Violation Yes/NO	Typical Source of Contaminant
Perfluoroundecanoic acid (PFUnA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
Perfluorododecanoic acid (PFDoA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
Perfluorodecanoic acid (PFDA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
Perfluoroheptanoic acid (PFHpA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
Perfluorotetradecanoic acid (PFTeDA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
Perfluorotridecanoic acid (PFTrDA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
N- methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
N- ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	
9-Chlorohexadecafluoro-3-oxanonane-1- sulfonic acid (ppt)	N/A	N/A	ND	N/A	2022	N/A	
11-Chloroeicosafluoro-3-oxaundecane-1- sulfonic acid (ppt)	N/A	N/A	ND	N/A	2022	N/A	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA) (ppt)	N/A	N/A	ND	N/A	2022	N/A	

Unit Descriptions	
Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μ g/L)
ppt	ppt: parts per trillion, or nanograms per liter
NTU	NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
% positive samples/month	% positive samples/month: Percent of samples taken monthly that were positive
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.
positive samples	positive samples/yr: The number of positive samples taken that year

Important Drink	ing Water Definitions
Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Contact Name: Jeffrey D Burkhard Address: PO Box 818 Bridgman, MI 49106 Phone: 269-465-3850